کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1900653 1045354 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniqueness of higher Gaudin Hamiltonians
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Uniqueness of higher Gaudin Hamiltonians
چکیده انگلیسی

For any semisimple Lie algebra g, the universal enveloping algebra of the infinite-dimensional pro-nilpotent Lie algebra g_:=g⊗t−1ℂ[t−1] contains a large commutative subalgebra A ⊂ U(g_). This subalgebra comes from the center of the universal enveloping of the affine Kac-Moody algebra at the critical level by the AKS-scheme. In this note we show that the corresponding “classical” Poisson-commutative subalgebra gr A ⊂ S(g_) is the Poisson centralizer of its simplest quadratic element, and deduce from this that the “quantum” subalgebra A ⊂ U(g_) is uniquely determined by the classical one. As an application, we show that Feigin-Frenkel-Reshetikhin's and Talalaev-Chervov's constructions of higher Hamiltonians of the Gaudin model give the same family of commuting operators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reports on Mathematical Physics - Volume 61, Issue 2, April 2008, Pages 247-252