کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1901115 | 1534237 | 2009 | 16 صفحه PDF | دانلود رایگان |

The Lie and module (Rinehart) algebraic structure of vector fields of compact support over C∞ functions on a (connected) manifold M define a unique universal noncommutative Poisson *-algebra ΛR(M). For a compact manifold, a (antihermitian) variable Z∈ΛR(M), central with respect to both the product and the Lie product, relates commutators and Poisson brackets; in the noncompact case, sequences of locally central variables allow for the addition of an element with the same rôle. Quotients with respect to Z*Z-z2I, z ≥ 0, define classical Poisson algebras and quantum observable algebras, with z = ħ. Under standard regularity conditions, the corresponding states and Hilbert space representations uniquely give rise to classical and quantum mechanics on M.
Journal: Reports on Mathematical Physics - Volume 64, Issues 1–2, August–October 2009, Pages 33-48