کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1906389 | 1046285 | 2013 | 8 صفحه PDF | دانلود رایگان |

We tested the hypothesis that curcumin supplementation would reverse arterial dysfunction and vascular oxidative stress with aging. Young (Y, 4–6 months) and old (O, 26–28 months) male C57BL6/N mice were given normal or curcumin supplemented (0.2%) chow for 4 weeks (n = 5–10/group/measure). Large elastic artery stiffness, assessed by aortic pulse wave velocity (aPWV), was greater in O (448 ± 15 vs. 349 ± 15 cm/s) and associated with greater collagen I and advanced glycation end-products and less elastin (all P < 0.05). In O, curcumin restored aPWV (386 ± 15 cm/s), collagen I and AGEs (AGEs) to levels not different vs. Y. Ex vivo carotid artery acetylcholine (ACh)-induced endothelial-dependent dilation (EDD, 79 ± 3 vs. 94 ± 2%), nitric oxide (NO) bioavailability and protein expression of endothelial NO synthase (eNOS) were lower in O (all P < 0.05). In O, curcumin restored NO-mediated EDD (92 ± 2%) to levels of Y. Acute ex vivo administration of the superoxide dismutase (SOD) mimetic TEMPOL normalized EDD in O control mice (93 ± 3%), but had no effect in Y control or O curcumin treated animals. O had greater arterial nitrotyrosine abundance, superoxide production and NADPH oxidase p67 subunit expression, and lower manganese SOD (all P < 0.05), all of which were reversed with curcumin. Curcumin had no effects on Y. Curcumin supplementation ameliorates age-associated large elastic artery stiffening, NO-mediated vascular endothelial dysfunction, oxidative stress and increases in collagen and AGEs in mice. Curcumin may be a novel therapy for treating arterial aging in humans.
► In old mice, curcumin reverses artery stiffness and endothelial dysfunction.
► Arterial oxidative stress with aging is attenuated with curcumin supplementation.
► Curcumin is a promising antioxidant therapy to treat age-related arterial dysfunction.
Journal: Experimental Gerontology - Volume 48, Issue 2, February 2013, Pages 269–276