کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1907956 1534959 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells
چکیده انگلیسی


• MnTE-2-PyP5+ induces S-glutathionylation of ETC Complexes I, III and IV.
• S-Glutathionylation of Complexes I and III inhibits their activity.
• MnTE-2-PyP5+ enhances lymphoma cell death due to glucocorticoids or 2-deoxyglucose.
• MnTE-2-PyP5+ does not enhance normal cell death due to glucocorticoids or 2DG.
• Induction of S-glutathionylation is required for MnTE-2-PyP5+ to enhance cytotoxicity.

The manganese porphyrin, manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin (MnTE-2-PyP5+), acts as a pro-oxidant in the presence of intracellular H2O2. Mitochondria are the most prominent source of intracellular ROS and important regulators of the intrinsic apoptotic pathway. Due to the increased oxidants near and within the mitochondria, we hypothesized that the mitochondria are a target of the pro-oxidative activity of MnTE-2-PyP5+ and that we could exploit this effect to enhance the chemotherapeutic response in lymphoma. In this study, we demonstrate that MnTE-2-PyP5+ modulates the mitochondrial redox environment and sensitizes lymphoma cells to antilymphoma chemotherapeutics. MnTE-2-PyP5+ increased dexamethasone-induced mitochondrial ROS and oxidation of the mitochondrial glutathione pool in lymphoma cells. The combination treatment induced glutathionylation of Complexes I, III, and IV in the electron transport chain, and decreased the activity of Complexes I and III, but not the activity of Complex IV. Treatment with the porphyrin and dexamethasone also decreased cellular ATP levels. Rho(0) malignant T-cells with impaired mitochondrial electron transport chain function were less sensitive to the combination treatment than wild-type cells. These findings suggest that mitochondria are important for the porphyrin’s ability to enhance cell death. MnTE-2-PyP5+ also augmented the effects of 2-deoxy-D-glucose (2DG), an antiglycolytic agent. In combination with 2DG, MnTE-2-PyP5+ increased protein glutathionylation, decreased ATP levels more than 2DG treatment alone, and enhanced 2DG-induced cell death in primary B-ALL cells. MnTE-2-PyP5+ did not enhance dexamethasone- or 2DG-induced cell death in normal cells. Our findings suggest that MnTE-2-PyP5+ has potential as an adjuvant for the treatment of hematologic malignancies.

Figure optionsDownload high-quality image (160 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Free Radical Biology and Medicine - Volume 83, June 2015, Pages 89–100
نویسندگان
, , , ,