کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1910616 1046779 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Glucose down-regulation of cGMP-dependent protein kinase I expression in vascular smooth muscle cells involves NAD(P)H oxidase-derived reactive oxygen species
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
Glucose down-regulation of cGMP-dependent protein kinase I expression in vascular smooth muscle cells involves NAD(P)H oxidase-derived reactive oxygen species
چکیده انگلیسی

Reduced levels of cGMP-dependent protein kinase I (PKG-I) in vasculature have been shown to contribute to diabetic vascular dysfunctions. However, the underlying mechanisms remain unknown. In this report, using primary rat aortic smooth muscle cells (VSMC), we investigated the mechanisms of glucose-mediated regulation of PKG-I expression. Our data showed that high glucose (30 mM glucose) exposure significantly reduced PKG-I production (protein and mRNA levels) as well as PKG-I activity in cultured VSMC. Glucose-mediated decreases in PKG-I levels were inhibited by a superoxide scavenger (tempol) or NAD(P)H oxidase inhibitors (diphenylene iodonium or apocynin). High glucose exposure time-dependently increased superoxide production in VSMC, which was abolished by tempol or apocynin treatment, but not by other inhibitors of superoxide-producing enzymes (L-NAME, rotenone, or oxypurinol). Total protein levels and phosphorylated levels of p47phox (an NADPH oxidase subunit) were increased in VSMC after high glucose exposure. Transfection of cells with siRNA–p47phox abolished glucose-induced superoxide production and restored PKG-I protein levels in VSMC. Treatment of cells with PKC inhibitor prevented glucose-induced p47phox expression/phosphorylation and superoxide production and restored the PKG-I levels. Decreased PKG-I protein levels were also found in femoral arteries from diabetic mice, which were associated with the decreased DEA-NONOate-induced vasorelaxation. Taken together, the present results suggest that glucose-mediated down-regulation of PKG-I expression in VSMC occurs through PKC-dependent activation of NAD(P)H oxidase-derived superoxide production, contributing to diabetes-associated vessel dysfunctions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Free Radical Biology and Medicine - Volume 42, Issue 6, 15 March 2007, Pages 852–863
نویسندگان
, , , , , ,