کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2026212 1070023 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity
چکیده انگلیسی

Tea (Camellia sinensis) is a globally important crop and is unusual because it both requires an acid soil and acidifies soil. Tea stands tend to be extremely heavily fertilized in order to improve yield and quality, resulting in a great potential for diffuse pollution. The microbial ecology of tea soils remains poorly understood; an improved understanding is necessary as processes affecting nutrient availability and loss pathways are microbially mediated. We therefore examined the relationships between soil characteristics (pH, organic C, total N, total P, available P, exchangeable Al), the soil microbial biomass (biomass C, biomass ninhydrin-N, ATP, phospholipid fatty acids—PLFAs) and its activities (respiration, net mineralization and nitrification). At the Tea Research Institute, Hangzhou (TRI), we compared fields of different productivity levels (low, medium and high) and at Hongjiashan village (HJS) we compared fields of different stand age (9, 50 and 90 years). At both sites tea soils were compared with adjacent forest soils. At both sites, soil pH was highest in the forest soil and decreased with increasing productivity and age of the tea stand. Soil microbial biomass C and biomass ninhydrin-N were significantly affected by tea production. At TRI, microbial biomass C declined in the order forest>low>high>middle production and at HJS in the order stand age 50>age 9>forest>age 90. Soil pH had a strong influence on the microbial biomass, demonstrated by positive linear correlations with: microbial biomass C, microbial biomass ninhydrin-N, the microbial biomass C:organic C ratio, the microbial biomass ninhydrin-N:total N ratio, the respiration rate and specific respiration rate. Above pH(KCl) 3.5 there was net N mineralization and nitrification, and below this threshold some samples showed net immobilization of N. A principal component (PC) analysis of PLFA data showed a consistent shift in the community composition with productivity level and stand age. The ratio of fungal:bacterial PLFA biomarkers was negatively and linearly correlated with specific respiration in the soils from HJS (r2=0.93, p=0.03). Our results demonstrate that tea cultivation intensity and duration have a strong impact on the microbial community structure, biomass and its functioning, likely through soil acidification and fertilizer addition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 39, Issue 7, July 2007, Pages 1468–1478
نویسندگان
, , ,