کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2026258 1070024 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labelled-leaf litter experiment
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labelled-leaf litter experiment
چکیده انگلیسی

Partitioning of the quantities of C lost by leaf litter through decomposition into (i) CO2 efflux to the atmosphere and (ii) C input to soil organic matter (SOM) is essential in order to develop a deeper understanding of the litter-soil biogeochemical continuum. However, this is a challenging task due to the occurrence of many different processes contributing to litter biomass loss. With the aim of quantifying different fluxes of C lost by leaf litter decomposition, a field experiment was performed at a short rotation coppice poplar plantation in central Italy. Populus nigra leaf litter, enriched in 13C (δ13C ∼ +160‰) was placed within collars to decompose in direct contact with the soil (δ13C ∼ −26‰) for 11 months. CO2 efflux from within the collars and its isotopic composition were determined at monthly intervals. After 11 months, remaining litter and soil profiles (0–20 cm) were sampled and analysed for their total C and 13C content. Gas chromatography (GC), GC–mass spectrometry (MS) and GC-combustion-isotope ratio (GC/C/IRMS) were used to analyse phospholipid fatty acids (PLFA) extracted from soil samples to identify the groups of soil micro-organisms that had incorporated litter-derived C and to determine the quantity of C incorporated by the soil microbial biomass (SMB). By the end of the experiment, the litter had lost about 80% of its original weight. The fraction of litter C lost as an input into the soil (67 ± 12% of the total C loss) was found to be twice as much as the fraction released as CO2 to the atmosphere (30 ± 3%), thus demonstrating the importance of quantifying litter-derived C input to soils, in litter decomposition studies. The mean δ13C values of PLFAs in soil (δ13C = −12.5‰) showed sustained incorporation of litter-derived C after one year (7.8 ± 1.6% of total PLFA-C). Thus, through the application of stable 13C isotope analyses, we have quantified two major C fluxes contributing to litter decomposition, at macroscopic and microscopic levels.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 42, Issue 7, July 2010, Pages 1009–1016
نویسندگان
, , , , , , , , , , ,