کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2028280 | 1542731 | 2012 | 8 صفحه PDF | دانلود رایگان |

The structure and function including synaptic plasticity of the hippocampus are deeply affected by steroids in a sex-dependant manner, these processes are believed to be mediated by steroid receptors though their coactivators. Our previous studies have reported the developmental profiles of steroid receptor coactivator-1 (SRC-1) and PSD-95 in the hippocampus of postnatal female rats and the sex-differences of SRC-1 immunoreactivities in the brain of adult mice. However, whether there are any sex differences about postnatal development of SRC-1 and synaptic proteins in the hippocampus remain unclear. In this study, we investigated the postnatal profile of SRC-1 and key synaptic protein synaptophysin (SYN), PSD-95 and GluR1 in the hippocampus of female and male mice using immunohistochemistry and Western blot. The results showed that in the female hippocampus, the highest levels of SRC-1 were detected at P14, SYN and GluR1 at P30 and PSD-95 at P60; while in the males, the highest levels of SRC-1, SYN and GluR1 were detected at P30, and PSD-95 at P60. Female hippocampus tended to have higher levels of SRC-1, SYN and GluR1 before P30 and PSD-95 before P14; while male hippocampus have higher levels of PSD-95 at P14, P60 and GluR1 at P0. Correlation analysis showed the profiles of SRC-1 were highly correlated with each synaptic protein. The above results showed that in the hippocampus, except some minor sex differences detected at some time-point examined, females and males shared similar postnatal developmental profile and SRC-1 may be deeply involved in the regulation of hippocampal synaptogenesis.
► Female and male mice shared similar postnatal profile of hippocampal SRC-1.
► No significant sex differences as to the hippocampal synaptogenesis.
► Hippocampal SRC-1 and synaptic proteins shared similar developmental profile.
► Hippocampal SRC-1 is potentially involved in the regulation of synaptogenesis.
Journal: Steroids - Volume 77, Issues 1–2, January 2012, Pages 149–156