کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
204919 461093 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optical soot measurement of bio-butanol upstream product, ABE (Acetone–Butanol–Ethanol), under diesel-like conditions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Optical soot measurement of bio-butanol upstream product, ABE (Acetone–Butanol–Ethanol), under diesel-like conditions
چکیده انگلیسی


• Soot distribution of ABE and diesel spray combustion based on FILE technology is studied.
• ABE is be able to achieves much cleaner combustion than diesel.
• FILE soot distribution captures more information than natural flame luminosity.
• Low soot of ABE is due to lean mixture and CO/C2H2 competing during chemical reactions.

ABE (Acetone–Butanol–Ethanol), the upstream product of bio-butanol, is considered as a promising alternative fuel for IC engine. Two-dimensional soot distribution and soot mass of spray combustion of ABE and diesel was measured by forward illumination light extinction (FILE) technology. The ambient temperature and oxygen concentration of injection was varied from 1200 K to 900 K and 21% to 11% to represent normal temperature combustion and low temperature combustion modes respectively. It was found that soot distribution area and intensity of ABE, especially ABE with a high acetone fraction, is much lower than that of diesel. The soot clouds area and intensity increase with increasing ambient temperature and decreasing oxygen concentration, but the increased scale of soot for ABE is much lower than that of diesel. Quantitative results of soot mass for ABE show that the soot increases rapidly with increasing ambient temperature at lower oxygen concentration conditions because the soot producing rate is largely increased when elevating temperature, while the soot oxidation rate remained slow due to the insufficient oxygen. Based on analysis, it was found that clean combustion of ABE benefited from a lean air–fuel mixture because of the great volatility and low stoichiometric ratio of the fuel, and the competition of Carbon atom between CO and C2H2 in the pyrolysis reactions that reduced the soot source materials. Overall, as an alternative IC fuel, ABE is able to achieve much lower soot than diesel and is able to maintain clean combustion in a large range of environmental conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuel - Volume 181, 1 October 2016, Pages 300–309
نویسندگان
, , , , ,