کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
206369 461181 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Influence of turbulence–chemical interaction on CFD pulverized coal MILD combustion modeling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Influence of turbulence–chemical interaction on CFD pulverized coal MILD combustion modeling
چکیده انگلیسی

MILD (Moderate and Intensive Low oxygen Dilution) combustion is a novel approach to reducing NOx emissions and improving combustion efficiency in fossil fuels power plants. It is characterized by elevated temperature and high dilution of reactants and strong recirculation inside the combustion chamber which produce a low temperature increase, thus reducing NOx formation. The main differences with conventional combustion concern the chemical reactions that take place in almost the entire volume of the combustion chamber and the uniformity of both temperature and the chemical species concentration. For this reason advanced turbulence-chemistry interaction models with detailed kinetic mechanisms are required to accurately simulate MILD by means of CFD calculations.The main aim of this work is to deepen the influence of turbulence-chemistry interaction on pulverized coal MILD combustion and to understand which models are more accurate and suitable to reproduce the process. In particular, two turbulence-chemistry interaction models are analyzed. On one hand, a conventional model based on infinitely fast chemistry Eddy Dissipation Model with a two-step global kinetic mechanism is considered. On the other hand, an advanced model based on finite rate chemistry Eddy Dissipation Concept is considered and used with both a global and detailed kinetic mechanisms. The results are finally compared with an experimental test-case.From the comparison, advanced turbulence-chemistry models used with complex kinetic mechanisms give, as expected, the best agreement with numerical results, despite the higher computational resources required.


► Investigation of turbulence-chemistry interaction models on coal MILD combustion.
► Infinite fast chemistry model with global kinetic mechanism considered.
► Finite rate chemistry model with detailed kinetic mechanisms considered.
► CFD results validated considering experimental data of IFRF Furnace test-case.
► Detailed kinetic with finite rate model correctly reproduce MILD combustion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuel - Volume 101, November 2012, Pages 90–101
نویسندگان
, ,