کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2076228 | 1544992 | 2011 | 9 صفحه PDF | دانلود رایگان |

Recently, reinforcement learning methods have drawn significant interests in the area of artificial intelligence, and have been successfully applied to various decision-making problems. In this paper, we study the applicability of the NAC (natural actor-critic) approach, a state-of-the-art reinforcement learning method, to the drug scheduling of cancer chemotherapy for an ODE (ordinary differential equation)-based tumor growth model. ODE-based cancer dynamics modeling is an active research area, and many different mathematical models have been proposed. Among these, we use the model proposed by de Pillis and Radunskaya (2003), which considers the growth of tumor cells and their interaction with normal cells and immune cells. The NAC approach is applied to this ODE model with the goal of minimizing the tumor cell population and the drug amount while maintaining the adequate population levels of normal cells and immune cells. In the framework of the NAC approach, the drug dose is regarded as the control input, and the reward signal is defined as a function of the control input and the cell populations of tumor cells, normal cells, and immune cells. According to the control policy found by the NAC approach, effective drug scheduling in cancer chemotherapy for the considered scenarios has turned out to be close to the strategy of continuing drug injection from the beginning until an appropriate time. Also, simulation results showed that the NAC approach can yield better performance than conventional pulsed chemotherapy.
Journal: Biosystems - Volume 106, Issues 2–3, November–December 2011, Pages 121–129