کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2079005 | 1545053 | 2008 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
RAPD Genetic Analysis on Etiological Factor of Mink Self-biting Disease
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
بیوتکنولوژی یا زیستفناوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Self-biting is a chronic disease, which causes wound to effect mink growth and pelt quality. In this study, we first adopted the RAPD (random amplification polymorphism DNA) technique based on the reproducible 26 polymorphism primers screened from 100 random primers to analyze the hereditary constitution of the samples from healthy minks and self-biting minks, respectively, at molecular level with the aim to discuss the causes of self-biting. The results showed that 29 straps showed polymorphism among the amplified 105 straps, of which the polymorphism rate is 27.62%. Between healthy and sick mink groups, the amplified DNA fragment through different primers indicated different distribution frequency. The similarity coefficient of mink groups is 0.8471 and the genetic distance (variation) index is 0.1529. Through primer S356, we amplified different straps between healthy and sick mink. The amplified 1000 bp DNA fragment in the sick mink groups can preliminarily serve as molecular genetic label to distinguish between healthy and sick mink groups to gradually remove the mink individual of self-biting, to achieve purification of mink groups and reduce economy loss of the mink breeding industry. This study might provide the theoretical basis for further researches on molecular breeding and disease prevention of mink.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Biotechnology - Volume 24, Issue 4, April 2008, Pages 563-568
Journal: Chinese Journal of Biotechnology - Volume 24, Issue 4, April 2008, Pages 563-568
نویسندگان
Yumei Li, Jiyuan Yao, Lina Ma, Zhiwei Li, Xiujuan Bai,