کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2079282 1079856 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
DATA MINING METHODS FOR OMICS AND KNOWLEDGE OF CRUDE MEDICINAL PLANTS TOWARD BIG DATA BIOLOGY
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوتکنولوژی یا زیست‌فناوری
پیش نمایش صفحه اول مقاله
DATA MINING METHODS FOR OMICS AND KNOWLEDGE OF CRUDE MEDICINAL PLANTS TOWARD BIG DATA BIOLOGY
چکیده انگلیسی

Molecular biological data has rapidly increased with the recent progress of the Omics fields, e.g., genomics, transcriptomics, proteomics and metabolomics that necessitates the development of databases and methods for efficient storage, retrieval, integration and analysis of massive data. The present study reviews the usage of KNApSAcK Family DB in metabolomics and related area, discusses several statistical methods for handling multivariate data and shows their application on Indonesian blended herbal medicines (Jamu) as a case study. Exploration using Biplot reveals many plants are rarely utilized while some plants are highly utilized toward specific efficacy. Furthermore, the ingredients of Jamu formulas are modeled using Partial Least Squares Discriminant Analysis (PLS-DA) in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. This model produces 71.6% correct classification in predicting efficacy. Permutation test then is used to determine plants that serve as main ingredients in Jamu formula by evaluating the significance of the PLS-DA coefficients. Next, in order to explain the role of plants that serve as main ingredients in Jamu medicines, information of pharmacological activity of the plants is added to the predictor block. Then N-PLS-DA model, multiway version of PLS-DA, is utilized to handle the three-dimensional array of the predictor block. The resulting N-PLS-DA model reveals that the effects of some pharmacological activities are specific for certain efficacy and the other activities are diverse toward many efficacies. Mathematical modeling introduced in the present study can be utilized in global analysis of big data targeting to reveal the underlying biology.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational and Structural Biotechnology Journal - Volume 4, Issue 5, January 2013, Pages 1–14
نویسندگان
, , , , , , , , , , ,