کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2079535 1079876 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A multivariate partial least squares approach to joint association analysis for multiple correlated traits
ترجمه فارسی عنوان
یک روش ارزیابی خرده مقیاس چند متغیره برای تجزیه و تحلیل انجمن مشترک برای صفات چندگانه همبستگی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
چکیده انگلیسی

Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion (BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability, polymorphic information content (PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Crop Journal - Volume 4, Issue 1, February 2016, Pages 21–29
نویسندگان
, , , ,