کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2089380 | 1545790 | 2006 | 13 صفحه PDF | دانلود رایگان |

Direct identification as well as isolation of antigen-specific T cells became possible since the development of “tetramers” based on avidin–fluorochrome conjugates associated with mono-biotinylated class I MHC–peptide monomeric complexes. In principle, a series of distinct class I MHC–peptide tetramers, each labelled with a different fluorochrome, would allow to simultaneously enumerate as many unique antigen-specific CD8+ T cells. Practically, however, only phycoerythrin and allophycocyanin conjugated tetramers have been generally available, imposing serious constraints for multiple labeling. To overcome this limitation, we have developed dextramers which are multimers based on a dextran backbone bearing multiple fluorescein and streptavidin moieties. Here we demonstrate the functionality and optimization of these new probes on human CD8+ T cell clones with four independent antigen specificities. Their applications to the analysis of relatively low frequency antigen-specific T cells in peripheral blood, as well as their use in fluorescence microscopy, are demonstrated. The data show that dextramers produce a stronger signal than their fluoresceinated tetramer counterparts. Thus, these could become the reagents of choice as the antigen-specific T cell labeling transitions from basic research to clinical application.
Journal: Journal of Immunological Methods - Volume 310, Issues 1–2, 20 March 2006, Pages 136–148