کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2143451 | 1088348 | 2008 | 11 صفحه PDF | دانلود رایگان |

SummaryIn the present study, we show that a combination of sulindac and arsenic trioxide (ATO) induces more extensive apoptosis than either drug alone in H1299 human non-small cell lung carcinoma (NSCLC) cells. Treatment with sulindac/ATO triggered three major apoptotic signaling events, namely, collapse of the mitochondrial membrane potential, release of cytochrome c, and activation of caspases. Furthermore, the sulindac/ATO combination induced reactive oxygen species (ROS) generation, and the antioxidant, N-acetyl-l-cysteine, blocked this apoptotic signaling. The c-Jun NH2-terminal kinase (JNK) was activated downstream of ROS production in H1299 cells. Blockage of JNK by pretreatment with SP600125, a pharmacological inhibitor, or transfection with dominant-negative (DN) JNK1 vectors abrogated sulindac/ATO-induced apoptosis, as evident from the disruption of caspase activation. Interestingly, a slower migrating Bcl-xL band was observed on immunoblots after treatment of cells with sulindac/ATO. The band was absent upon the treatment of cell lysates with λ protein phosphatase. Moreover, confocal microscopy findings disclose that active JNK translocates to mitochondria. Treatment with SP600125 and transfection with DN-JNK blocked Bcl-xL phosphorylation, suggesting that JNK plays an important role in sulindac/ATO-induced Bcl-xL phosphorylation. In conclusion, in H1299 human NSCLC cells, sulindac and ATO synergistically induce a high degree of apoptosis, which is mediated by the ROS-dependent JNK activation pathway via Bcl-xL phosphorylation.
Journal: Lung Cancer - Volume 61, Issue 3, September 2008, Pages 317–327