کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2148070 | 1548606 | 2013 | 11 صفحه PDF | دانلود رایگان |

Cigarette smoke is a complex mixture of chemicals, some of which are known as carcinogens. The cyto-genotoxic effects of cigarette-smoke extract (CSE) from commercial cigarettes without (A and B) and with filter (C and D) were evaluated at different CSE concentrations on A549 and BEAS-2B cells. The particle content of the cigarette smoke and the metal composition of the CSE were also analyzed. The cells were exposed to 1–10% of the CSE from one cigarette per experiment. Cytotoxicity was evaluated by use of the MTT assay after 24 h, and the lactate dehydrogenase (LDH) assay after 30 min and 24 h. The Fpg-modified comet assay was used to evaluate direct-oxidative DNA damage on cells exposed for 30 min. As expected, unfiltered cigarette smoke (particularly from the B cigarette) contained a higher number of particles than filtered smoke. With smoke extract from the B cigarette we found a decrease in cell viability only in BEAS-2B cells. The results of the LDH test showed membrane damage for B-cigarette smoke extract, particularly in BEAS-2B cells. Extracts from unfiltered cigarette smoke induced significant direct DNA damage, to a larger extent in A549 cells. Filtered cigarette-smoke extract induced a significant direct DNA damage at 5–10%. A significant induction of oxidative DNA damage was found at the highest CSE concentration in both cell types (by smoke extracts from B and C cigarettes in A549 cells, and from A and D cigarettes in BEAS-2B cells). Smoke extracts from filter cigarettes induced less direct DNA damage than those from unfiltered cigarettes in A549 cells, probably due to a protective effect of filter. In BEAS-2B cells the smoke extract from the B-cigarette showed the highest genotoxic effect, with a concentration-dependent trend.These findings show a higher cyto-genotoxicity for smoke extracts from the B-cigarette and oxidative effects for those from the A and D cigarettes, particularly in BEAS-2B cells. Moreover, there was a higher responsiveness of A549 cells to genotoxic insult of CSE, and a cigarette-dependent genotoxicity in BEAS-2B cells. Our experimental model demonstrated to be suitable to sensitively detect early genotoxic response of different lung-cell types to non-cytotoxic concentrations of complex inhalable mixtures.
► We evaluate in lung cells the cyto-genotoxicity of filtered/unfiltered cigarettes.
► Slight cytotoxic effects were found only in BEAS-2B cells.
► Higher genotoxicity for unfiltered was found in A549 cells.
► A concentration and cigarette dependent genotoxicity was found in BEAS-2B cells.
► Oxidative DNA damage was found at the highest CSE% in both cell types.
Journal: Mutation Research/Genetic Toxicology and Environmental Mutagenesis - Volume 750, Issues 1–2, 20 January 2013, Pages 1–11