کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2152220 | 1090053 | 2008 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Transcriptional Fingerprint of Estrogen in Human Breast Cancer Predicts Patient Survival
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
تحقیقات سرطان
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Estrogen signaling plays an essential role in breast cancer progression, and estrogen receptor (ER) status has long been a marker of hormone responsiveness. However, ER status alone has been an incomplete predictor of endocrine therapy, as some ER+ tumors, nevertheless, have poor prognosis. Here we sought to use expression profiling of ER+ breast cancer cells to screen for a robust estrogen-regulated gene signature that may serve as a better indicator of cancer outcome. We identified 532 estrogen-induced genes and further developed a 73-gene signature that best separated a training set of 286 primary breast carcinomas into prognostic subtypes by stepwise cross-validation. Notably, this signature predicts clinical outcome in over 10 patient cohorts as well as their respective ER+ subcohorts. Further, this signature separates patients who have received endocrine therapy into two prognostic subgroups, suggesting its specificity as a measure of estrogen signaling, and thus hormone sensitivity. The 73-gene signature also provides additional predictive value for patient survival, independent of other clinical parameters, and outperforms other previously reported molecular outcome signatures. Taken together, these data demonstrate the power of using cell culture systems to screen for robust gene signatures of clinical relevance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neoplasia - Volume 10, Issue 1, January 2008, Pages 79-88, IN30-IN34
Journal: Neoplasia - Volume 10, Issue 1, January 2008, Pages 79-88, IN30-IN34
نویسندگان
Jianjun Yu, Jindan Yu, Kevin E. Cordero, Michael D. Johnson, Debashis Ghosh, James M. Rae, Arul M. Chinnaiyan, Marc E. Lippman,