کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2168391 1092887 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings
چکیده انگلیسی

Plant recovery status after cryopreservation by vitrification had a negative relationship to the oxidative stress induced by reactive oxygen species (ROS). Arabidopsis thaliana seedlings germinated for 48 h or 72 h with different survival tolerances were examined at five steps of cryopreservation, to determine the role of ROS (O2−, H2O2 and OH) and antioxidant systems (SOD, POD, CAT, AsA and GSH) in cryo-injury. In addition, the effects of the steps on membrane lipid peroxidation were studied using malondialdehyde (MDA) as an indicator. The results indicated that H2O2-induced oxidative stress at the steps of dehydration and rapid warming was the main cause of cryo-injury of 48-h seedlings (high survival rate) and 72-h seedlings (no survival). The H2O2 was mainly generated in cotyledons, shoot tips and roots of seedlings as indicated by Amplex Red staining. Low survival of 72-h seedlings was associated with severe membrane lipid peroxidation, which was caused by increased OH generation activity and decreased SOD activity. The antioxidant-related gene expression by qRT-PCR and physiological assays suggested that the antioxidant system of 48-h seedlings were activated by ROS, and they mounted a defense against oxidative stress. A high level of ROS led to the weakening of the antioxidant system of 72-h seedlings. Correlation analysis indicated that enhanced antioxidant enzymes activities contributed to the high survival rate of 48-h seedlings, which could reflect by cryopreservation of antioxidant mutant seedlings. This model system indicated that elevated CAT activity and AsA content were determinants of cryogenic stress tolerance, whose manipulation could improve the recovery of seedlings after cryopreservation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cryobiology - Volume 70, Issue 1, February 2015, Pages 38–47
نویسندگان
, , , , , ,