کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2174327 | 1093791 | 2009 | 12 صفحه PDF | دانلود رایگان |

Cerebral cortical precursor cells reside in a neuroepithelial cell layer that regulates their proliferation and differentiation. Global disruptions in epithelial architecture induced by loss of the adherens junction component αE-catenin lead to hyperproliferation. Here we show that cell autonomous reduction of αE-catenin in the background of normal precursors in vivo causes cells to prematurely exit the cell cycle, differentiate into neurons, and migrate to the cortical plate, while normal neighboring precursors are unaffected. Mechanistically, αE-catenin likely regulates cortical precursor differentiation by maintaining β-catenin signaling, as reduction of αE-catenin leads to reduction of β-catenin signaling in vivo. These results demonstrate that, at the cellular level, αE-catenin serves to maintain precursors in the proliferative ventricular zone, and suggest an unexpected function for αE-catenin in preserving β-catenin signaling during cortical development.
Journal: Developmental Biology - Volume 328, Issue 1, 1 April 2009, Pages 66–77