کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2179608 1095065 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Field assessment of sub-epidermal leaf anthocyanin, PSII photochemistry, and the xanthophyll-cycle as photoprotective mechanisms in two morphs of Agave striata
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
Field assessment of sub-epidermal leaf anthocyanin, PSII photochemistry, and the xanthophyll-cycle as photoprotective mechanisms in two morphs of Agave striata
چکیده انگلیسی

We tested the hypothesis that leaf epidermal pigments screen light of particular wavelengths from reaching the photosynthetic machinery, reducing dependence on the xanthophyll-cycle as an energy dissipation process. Under field conditions, photosynthesis and water relations were studied in two morphs of Agave striata that differ in leaf coloration (green vs. reddish-purple). Titratable acidity, chlorophyll fluorescence, and internal and surface leaf temperatures were measured under low irradiance by shading (30%) and full sunlight (100%) for six days. We also measured the reflectance ratio (RRED: RGREEN), an index of anthocyanin content and the change in photochemical reflectance index (ΔPRI), an index of xanthophyll-cycle de-epoxidation state (xanthophyll conversion). Our results showed that both morphs expressed typical CAM-activity with no significant differences under sun vs. shade. However, shading did reduce titratable acids in both morphs. Both morphs were well hydrated, with the relative water content (RWC) being greater than 93%. Leaf surface temperature was found to be significantly higher during the day in the green morph compared to the red morph under sun and shade. Dark level fluorescence (Fo), photochemical efficiency of PSII (Fv/Fm), and the quantum yield of PSII electron transport (ΦPSII) were higher in the red morph under sun compared to the green morph. The value of qN (non-photochemical quenching) was significantly higher during the day for the green morph compared to the red morph and this higher qN value was associated with a greater xanthophyll conversion and surface leaf temperature. However, sunlight did not predispose either of the morphs to photoinhibition. It is clear that the sub-epidermal anthocyanins serve as a photoprotective mechanism in the red morph, screening light energy from reaching the photosynthetic machinery and reducing dependence on the xanthophyll-cycle. We concluded that under natural light conditions the leaves of two morphs tested utilized differential photoprotective mechanisms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Flora - Morphology, Distribution, Functional Ecology of Plants - Volume 209, Issue 2, February 2014, Pages 131–141
نویسندگان
, , ,