کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2180325 | 1095129 | 2008 | 5 صفحه PDF | دانلود رایگان |

The co-evolution theory for red leaf colors considers redness as a handicap signal against herbivory. We have examined whether the assumed signal is honest and, accordingly, costly, by seeking a correlation between anthocyanin and total phenolic levels in 11 plants exhibiting variation in the expression of the red character either between individuals or between modules on the same individual. Selection of total phenolics as a variable was based on their assumed anti-herbivore function and on their common biosynthetic origin with anthocyanins. Plants with young or senescing red leaves were tested. Confirming evidence was found in senescing leaves, where in three out of the four studied species a significant and strongly positive correlation between signal strength (redness) and actual defensive potential (total phenolics) was found, rendering the signal both honest and costly. In young, developing leaves a significant, yet weakly positive correlation was found only in three out the seven examined species. Accordingly, the handicap signal hypothesis may be questioned in the case of young leaves. Hence, young leaf redness fits more to the alternative hypotheses that red leaf color is less easily perceived by folivorous insect photoreceptors or that red leaf color undermines insect camouflage. These hypotheses do not demand an increased chemical defensive potential.
Journal: Flora - Morphology, Distribution, Functional Ecology of Plants - Volume 203, Issue 8, November 2008, Pages 648–652