کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2185896 1096023 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transcription Profile of Thermus thermophilus CRISPR Systems after Phage Infection
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
Transcription Profile of Thermus thermophilus CRISPR Systems after Phage Infection
چکیده انگلیسی

The clustered regularly interspaced short palindromic repeat (CRISPR) systems composed of DNA direct repeats designated as CRISPRs and several CRISPR-associated (cas) genes, which are present in many prokaryotic genomes, make up a host defense system against invading foreign replicons such as phages. In order to investigate the altered expression profiles of the systems after phage infection using a model organism, Thermus thermophilus HB8, which has 12 CRISPR loci, genome-wide transcription profiling of the strain infected with lytic phage ΦYS40 was performed by DNA microarray analysis. Significant alteration of overall mRNA expression gradually increased during infection (i.e., from the eclipse period to the period of host cell lysis). Interestingly, the expression of most cAMP receptor protein (CRP)–regulated genes, including two CRISPR-associated (cas) operons, was most markedly up-regulated, especially around the beginning of host cell lysis, although up-regulation of the crp gene was not observed. The expression of the CRP-regulated genes was less up-regulated in a crp-deficient strain than in the wild type. Thus, it is suggested that cAMP is a signaling molecule that transmits information on phage infection to CRP to up-regulate these genes. On the other hand, the expression of several cas genes and that of CRISPRs were up-regulated independent of CRP, suggesting the involvement of unidentified regulatory factor(s) induced by phage infection. On analysis of the expression profile of the entire genome, we could speculate that upon phage infection, the signal was transmitted to the cells, with host response systems including CRISPR defense systems being activated, while the overall efficiencies of transcription, translation, and metabolism in the cells decreased. These findings will facilitate understanding of the host response mechanism following phage infection.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Biology - Volume 395, Issue 2, 15 January 2010, Pages 270–281
نویسندگان
, , , , , ,