کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2190702 1097809 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Differential regulation of EHD3 in human and mammalian heart failure
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
Differential regulation of EHD3 in human and mammalian heart failure
چکیده انگلیسی

Electrical and structural remodeling during the progression of cardiovascular disease is associated with adverse outcomes subjecting affected patients to overt heart failure (HF) and/or sudden death. Dysfunction in integral membrane protein trafficking has long been linked with maladaptive electrical remodeling. However, little is known regarding the molecular identity or function of these intracellular targeting pathways in the heart. Eps15 homology domain-containing (EHD) gene products (EHD1–4) are polypeptides linked with endosomal trafficking, membrane protein recycling, and lipid homeostasis in a wide variety of cell types. EHD3 was recently established as a critical mediator of membrane protein trafficking in the heart. Here, we investigate the potential link between EHD3 function and heart disease. Using four different HF models including ischemic rat heart, pressure overloaded mouse heart, chronic pacing-induced canine heart, and non-ischemic failing human myocardium we provide the first evidence that EHD3 levels are consistently increased in HF. Notably, the expression of the Na/Ca exchanger (NCX1), targeted by EHD3 in heart is similarly elevated in HF. Finally, we identify a molecular pathway for EHD3 regulation in heart failure downstream of reactive oxygen species and angiotensin II signaling. Together, our new data identify EHD3 as a previously unrecognized component of the cardiac remodeling pathway.


► EHD3 is identified as a new protein associated with cardiac remodeling and disease.
► EHD3 is differentially expressed in human HF and three animal models of HF.
► Regulation of EHD3 is downstream of AngII signaling and depends on ROS formation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular and Cellular Cardiology - Volume 52, Issue 5, May 2012, Pages 1183–1190
نویسندگان
, , , , , , , , , , , , , ,