کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2191221 1097853 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts — Role of late sodium current and intracellular ion accumulation
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts — Role of late sodium current and intracellular ion accumulation
چکیده انگلیسی

The goal of this study was to test the hypothesis that the novel anti-ischemic drug ranolazine, which is known to inhibit late INa, could reduce intracellular [Na+]i and diastolic [Ca2+]i overload and improve diastolic function. Contractile dysfunction in human heart failure (HF) is associated with increased [Na+]i and elevated diastolic [Ca2+]i. Increased Na+ influx through voltage-gated Na+ channels (late INa) has been suggested to contribute to elevated [Na+]i in HF. In isometrically contracting ventricular muscle strips from end-stage failing human hearts, ranolazine (10 µmol/L) did not exert negative inotropic effects on twitch force amplitude. However, ranolazine significantly reduced frequency-dependent increase in diastolic tension (i.e., diastolic dysfunction) by ~ 30% without significantly affecting sarcoplasmic reticulum (SR) Ca2+ loading. To investigate the mechanism of action of this beneficial effect of ranolazine on diastolic tension, Anemonia sulcata toxin II (ATX-II, 40 nmol/L) was used to increase intracellular Na+ loading in ventricular rabbit myocytes. ATX-II caused a significant rise in [Na+]i typically seen in heart failure via increased late INa. In parallel, ATX-II significantly increased diastolic [Ca2+]i. In the presence of ranolazine the increases in late INa, as well as [Na+]i and diastolic [Ca2+]i were significantly blunted at all stimulation rates without significantly decreasing Ca2+ transient amplitudes or SR Ca2+ content. In summary, ranolazine reduced the frequency-dependent increase in diastolic tension without having negative inotropic effects on contractility of muscles from end-stage failing human hearts. Moreover, in rabbit myocytes the increases in late INa, [Na+]i and [Ca2+]i caused by ATX-II, were significantly blunted by ranolazine. These results suggest that ranolazine may be of therapeutic benefit in conditions of diastolic dysfunction due to elevated [Na+]i and diastolic [Ca2+]i.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular and Cellular Cardiology - Volume 45, Issue 1, July 2008, Pages 32–43
نویسندگان
, , , , , , , , , , ,