کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2198443 1551143 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distinct modulation of the endocannabinoid system upon kainic acid-induced in vivo seizures and in vitro epileptiform bursting
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
Distinct modulation of the endocannabinoid system upon kainic acid-induced in vivo seizures and in vitro epileptiform bursting
چکیده انگلیسی

There is clear evidence on the neuroprotective role of the endocannabinoid (eCB) signaling cascade in various models of epilepsy. In particular, increased levels of eCBs protect against kainic acid (KA)-induced seizures. However, the molecular mechanisms underlying this effect and its age-dependence are still unknown. To clarify this issue, we investigated which step of the biosynthetic and catabolic pathways of the eCBs may be responsible for the eCB-mediated neuroprotection in the hippocampus of P14 and P56–70 KA-treated rats. We found that both anandamide and N-palmitoylethanolamine, together with their biosynthetic enzyme significantly increased in the hippocampus of younger KA-treated rats, while decreasing in adults. In contrast, the levels of the other major eCB, 2-arachidonoylglycerol, similar to its biosynthetic enzyme, were higher in the hippocampus of P56–70 compared to P14 rats.In line with these data, extracellular field recordings in CA1 hippocampus showed that enhancement of endogenous AEA and 2-AG significantly counteracted KA-induced epileptiform bursting in P56–70 and P14 rats, respectively. On the contrary, while the CB1R antagonist SR141716 per se did not affect the population spike, it did worsen KA-induced bursts, confirming increased eCB tone upon KA treatment. Altogether these data indicate an age-specific alteration of the eCB system caused by KA and provide insights for the protective mechanism of the cannabinoid system against epileptiform discharges.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Molecular and Cellular Neuroscience - Volume 62, September 2014, Pages 1–9
نویسندگان
, , , , , , , , ,