کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2202158 | 1100066 | 2007 | 11 صفحه PDF | دانلود رایگان |

Evidence is accumulating that the exclusive dopamine hypothesis of schizophrenia has to be abandoned. Instead, a more integrative approach combines different neurotransmitter systems, in which glutamatergic, GABAergic and dopaminergic pathways interact. This paradigm shift coincides with the recognition that, while typical and modern atypical antipsychotic drugs have efficiently controlled the dramatic psychotic symptoms of schizophrenia, their impact on negative and cognitive symptoms is negligible. Indeed, cognitive decline is now believed to represent the core of schizophrenic morbidity and in this context, impairment of glutamate and more specifically NMDA function is of major importance. Given that astrocytes are important in controlling glutamate homeostasis, it is necessary to assign a significant role to glial–neuronal interactions in the pathophysiology of schizophrenia. Indeed, recent data from several animal and human studies corroborate this notion. This review outlines current neurotransmitter hypotheses and evidence for glial impairment in schizophrenia. Furthermore, findings from recent studies of 13C nuclear magnetic resonance spectroscopy in experimental models of schizophrenia and NMDA hypofunction are presented and their implications for future research on glial–neuronal interactions discussed.
Journal: Neurochemistry International - Volume 50, Issue 2, January 2007, Pages 291–301