کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
239050 | 465791 | 2008 | 13 صفحه PDF | دانلود رایگان |

The deacidification of the fumed silica AEROSIL® 200 was studied experimentally in a batch fluidized bed in the temperature range from 250 °C to 400 °C. For a well fluidized bed, the temperature and the steam concentration in the fluidizing gas are the determining parameters for the overall rate of deacidification. If the bed is not well fluidized, e.g. because it is too shallow, or it is fluidized near the point of minimum fluidization velocity, the rate of deacidification drops because channeling and bypassing occur. The adsorption equilibrium of steam and HCl on AEROSIL® 200 was measured for a wide temperature range and the temperature dependency of the Henry coefficient for steam is given. A mathematical reactor model was developed for the adsorption and for the surface reaction on highly agglomerated nanoparticles in a fluidized bed. In applying this model to the experimental data for the deacidification, a simple kinetic rate expression could be derived for the deacidification reaction, which is otherwise not obtainable. The temperature dependency of the rate constant was also determined. All other parameters for the model can either be found through independent measurements (e.g. adsorption equilibrium or fluidizing characteristics) or in literature. The model can be used for sizing and optimizing of fluidized bed reactors in the production of fumed oxides.
The deacidification of the fumed silica AEROSIL® 200 was studied experimentally in a batch fluidized bed in the temperature range from 250 °C to 400 °C. A mathematical reactor model was developed for the adsorption and for the surface reaction on these highly agglomerated nanoparticlesFigure optionsDownload as PowerPoint slide
Journal: Powder Technology - Volume 183, Issue 3, 21 April 2008, Pages 467–479