کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
240782 1427929 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane
چکیده انگلیسی

Knowledge of in-situ fuel distributions in practical combustion devices, such as internal combustion engines, is crucial for research and devlopment purposes. Numerous imaging techniques, mostly based on laser-induced fluorescence (LIF), have been developed and yield high levels of 2-D spatial information, but generally lack the temporal resolution (frame rates) necessary to resolve important timescales at sub-millisecond levels for sustained times. A planar LIF technique for quantitatively visualizing fuel distribution is presented which gives not only high spatial resolution, but also high temporal resolution. Using a high-speed CMOS camera, a lens-coupled image intensifier, and frequency-tripled diode-pumped Nd:YAG laser allows for capturing LIF images of biacetyl that is used as a fluorescence tracer at 12 kHz (one crank-angle resolution at 2000 RPM) for hundreds of consecutive engine cycles. The LIF signal strength of biacetyl doped in iso-octane is shown to vary substantially over a wide range of temperatures and pressures. The low absorption coefficient at 355 nm and a longpass filter in the detection path exclude bias errors due to laser beam attenuation and fluorescence trapping. An intensifier gate time of 350 ns is shown to suppress the detection of phosphorescence signals under practical conditions. An example for a quantitative high-speed measurement of fuel concentration at varying pressure and temperature conditions is presented. Quantitative equivalence ratio maps are shown for the fuel injection event within a single cycle in a spark-ignition direct-injected engine, showing the ability of the technique to not only reveal static fuel concentration maps, but also the motion of the fuel cloud along with very steep gradients. Spray velocities determined from the moving fuel cloud are in agreement with previous particle image velocimetry measurements.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Proceedings of the Combustion Institute - Volume 31, Issue 1, January 2007, Pages 747–755
نویسندگان
, ,