کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2417938 | 1104332 | 2007 | 12 صفحه PDF | دانلود رایگان |

Many theoretical models have been proposed to explain and predict the behaviour of air-breathing divers exploiting a food resource underwater. Many field observations of the behaviour of divers do not fit with the prediction that to maximize energetic gain divers should dive close to their aerobic diving limits. In an attempt to explain this paradox, Thompson & Fedak (2001, Animal Behaviour, 61, 286–297) proposed a model of diving behaviour that takes into account patchily distributed prey patches of varying quality. We tested this model experimentally in a simulated foraging set-up. We measured the diving behaviour of grey seals, Halichoerus grypus, diving to patches of varying prey density and distance from the surface. Our results were equivocal with respect to the model predictions. Seals responded to prey density, leaving low-quality patches earlier. However, this pattern was still evident at long dive distances, contrary to the prediction that during deep dives seals should stay at a patch regardless of prey density. While seals maximized dive durations at high prey densities and long distances, they did not do so at short distances. The apparent quitting strategy of the seals always produced higher net rates of energy gain than would have been achieved if they had remained at the foraging site up to their aerobic dive limit on every dive. These results indicate that seals' diving behaviour, particularly bottom duration, may indicate the relative prey availability in their environment.
Journal: Animal Behaviour - Volume 74, Issue 2, August 2007, Pages 207–218