کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2439607 1108101 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of solvent and temperature on the size distribution of casein micelles measured by dynamic light scattering
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم دامی و جانورشناسی
پیش نمایش صفحه اول مقاله
Effect of solvent and temperature on the size distribution of casein micelles measured by dynamic light scattering
چکیده انگلیسی
The objectives of this study were to investigate the effect of the solvent on the accuracy of casein micelle particle size determination by dynamic light scattering (DLS) at different temperatures and to establish a clear protocol for these measurements. Dynamic light scattering analyses were performed at 6, 20, and 50°C using a 90Plus Nanoparticle Size Analyzer (Brookhaven Instruments, Holtsville, NY). Raw and pasteurized skim milk were used as sources of casein micelles. Simulated milk ultrafiltrate, ultrafiltered water, and permeate obtained by ultrafiltration of skim milk using a 10-kDa cutoff membrane were used as solvents. The pH, ionic concentration, refractive index, and viscosity of all solvents were determined. The solvents were evaluated by DLS to ensure that they did not have a significant influence on the results of the particle size measurements. Experimental protocols were developed for accurate measurement of particle sizes in all solvents and experimental conditions. All measurements had good reproducibility, with coefficients of variation below 5%. Both the solvent and the temperature had a significant effect on the measured effective diameter of the casein micelles. When ultrafiltered permeate was used as a solvent, the particle size and polydispersity of casein micelles decreased as temperature increased. The effective diameter of casein micelles from raw skim milk diluted with ultrafiltered permeate was 176.4 ± 5.3 nm at 6°C, 177.4 ± 1.9 nm at 20°C, and 137.3 ± 2.7 nm at 50°C. This trend was justified by the increased strength of hydrophobic bonds with increasing temperature. Overall, the results of this study suggest that the most suitable solvent for the DLS analyses of casein micelles was casein-depleted ultrafiltered permeate. Dilution with water led to micelle dissociation, which significantly affected the DLS measurements, especially at 6 and 20°C. Simulated milk ultrafiltrate seemed to give accurate results only at 20°C. Results obtained in simulated milk ultrafiltrate at 6°C could not be explained based on the known effects of temperature on the casein micelle, whereas at 50°C, precipitation of amorphous calcium phosphate affected the DLS measurement.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Dairy Science - Volume 92, Issue 5, May 2009, Pages 1829-1839
نویسندگان
, ,