کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2452897 | 1110060 | 2011 | 12 صفحه PDF | دانلود رایگان |

In recent years the vector-borne diseases (VBD) are (re)-emerging and spreading across the world having a profound impact on human and veterinary health, ecology, socio-economics and disease management. Arguably the best-documented example of veterinary importance is the recent twofold invasion of bluetongue (BT) in Europe. Much attention has been devoted to derive presence-absence habitat distribution models and to model transmission through direct contact. Limited research has focused on the dynamic modelling of wind mediated BT spread.This paper shows the results of a stochastic predictive model used to assess the spread of bluetongue by vectors considering both wind-independent and wind-mediated movement of the vectors. The model was parameterised using epidemiological knowledge from the BTV8 epidemic in 2006/2007 and the BTV1 epidemic in 2008 in South-France. The model correctly reflects the total surface of the infected zone (overall accuracy = 0.77; sensitivity = 0.94; specificity = 0.65) whilst slightly overestimating spatial case density.The model was used operationally in spring 2009 to predict further spread of BTV1. This allowed veterinary officers in Belgium to decide whether there was a risk of introduction of BTV1 from France into Belgium and thus, whether there was a need for vaccination. Given the far distance from the predicted infected zone to the Belgian border, it was decided not to vaccinate against BTV1 in 2009 in Belgium.
Journal: Preventive Veterinary Medicine - Volume 99, Issue 1, 1 April 2011, Pages 48–59