کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2482706 1556293 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Particle swarm algorithm trained neural network for QSAR studies of inhibitors of platelet-derived growth factor receptor phosphorylation
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی اکتشاف دارویی
پیش نمایش صفحه اول مقاله
Particle swarm algorithm trained neural network for QSAR studies of inhibitors of platelet-derived growth factor receptor phosphorylation
چکیده انگلیسی

The multilayer feed-forward artificial neural network (ANN) has been widely used in QSAR studying. Back-propagation algorithm (BP) and the use of evolutionary search as an ANN training method has some limitations associated with overfitting, local optimum problems and slow convergence rate. In this paper, particle swarm optimization (PSO) as a relatively new optimization technique has been used in ANN training. Compared to ANN trained by BP algorithm and evolutionary search, ANN training by PSO algorithm (PSONN) show satisfactory performance, converges quickly towards the optimal position and can avoid overfitting in some extent. The PSONN has been testified by using in QSAR modeling for inhibitory activity of 4-[4-(N-substituted (thio) carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline derivatives.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Pharmaceutical Sciences - Volume 28, Issue 5, August 2006, Pages 369–376
نویسندگان
, , , ,