کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2495074 | 1115594 | 2007 | 12 صفحه PDF | دانلود رایگان |

We have previously demonstrated that gabapentin supraspinally activates the descending noradrenergic system to alleviate neuropathic pain. In this study, we investigated whether pregabalin, an antiepileptic and analgesic drug that is also designed as a structural analogue of γ-aminobutyric acid (GABA), exhibits supraspinal analgesic effects similar to those of gabapentin involving the descending noradrenergic system. Both systemically (intraperitoneally; i.p.) and locally (intracerebroventricularly or intrathecally; i.c.v. or i.t.) injected pregabalin reduced thermal and mechanical hypersensitivity in a murine chronic pain model that was prepared by partial ligation of the sciatic nerve (the Seltzer model), suggesting that pregabalin acts at both supraspinal and spinal loci. The supraspinal analgesic action of pregabalin was observed only after peripheral nerve injury, and pregabalin (i.p. and i.c.v.) did not affect acute thermal and mechanical nociception. Depletion of spinal noradrenaline (NA) or pharmacological blockade of spinal α2-adrenoceptors with yohimbine (i.p. or i.t.), but not α1-adrenoceptors with prazosin (i.p.), reduced the analgesic effects of pregabalin (i.p. or i.c.v.) on thermal and mechanical hypersensitivity. Moreover, i.c.v.-administered pregabalin dose-dependently increased the spinal 4-hydroxy-3-methoxyphenylglycol (MHPG) content and the MHPG/NA ratio only in mice with neuropathic pain, whereas the concentrations of NA, serotonin, 5-hydroxyindoleacetic acid and dopamine were unchanged, demonstrating that supraspinal pregabalin accelerated the spinal turnover of NA. Together, these results indicate that pregabalin supraspinally activates the descending noradrenergic pain inhibitory system coupled with spinal α2-adrenoceptors to ameliorate neuropathic pain.
Journal: Neuropharmacology - Volume 53, Issue 7, December 2007, Pages 842–853