کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2534510 | 1559093 | 2009 | 6 صفحه PDF | دانلود رایگان |

Our previous study showed that insulin restored impaired function and expression of P-glycoprotein in diabetic blood-brain barrier, and further study showed that insulin up-regulated P-glycoprotein expression and function in normal blood-brain barrier, so insulin might be one of the factors that regulated the function and expression of P-glycoprotein in blood-brain barrier of diabetes. In this study, the intracellular pathways that insulin regulated the P-glycoprotein were investigated using primarily cultured rat brain microvessel endothelial cells model. The rat brain microvessel endothelial cells were incubated in normal culture medium containing 50 mU/l insulin and different concentrations of inhibitors for 72 h. The P-glycoprotein function and expression in the rat brain microvessel endothelial cells were assessed using the uptake of P-glycoprotein substrate rhodamine 123 and western blot assay, respectively. It was found that treatment of 50 mU/l insulin significantly increased P-glycoprotein function and expression in rat brain microvessel endothelial cells. This induced effect was blocked by insulin receptor antibody, insulin receptor tyrosine kinase inhibitor I-OMe-AG538, PKC inhibitor chelerythrine and NF-κB inhibitor pyrrolidine dithiocarbamate ammonium (PDTC). But this induced effect was not inhibited by phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor LY294002. These results indicated that insulin regulated P-glycoprotein function and expression through signal transduction pathways involving activation of PKC/NF-κB but not PI3K/Akt pathway.
Journal: European Journal of Pharmacology - Volume 602, Issues 2–3, 14 January 2009, Pages 277–282