کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
256027 503538 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continuous health monitoring of pavement systems using smart sensing technology
ترجمه فارسی عنوان
نظارت مداوم بر سلامت سیستم های پیاده رو با استفاده از تکنولوژی حسگر هوشمند
کلمات کلیدی
نظارت بر بهداشت روکش، سنسور بیسیم خودتنظیم ترک خوردگی خستگی، خسارت
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
چکیده انگلیسی


• A self-powered sensing approach is proposed for health monitoring of pavement systems.
• Damage detection performance is evaluated with numerical and experimental studies.
• A new miniaturized spherical packaging system is designed for the protection of embedded sensing system.
• Damage localization and quantification is investigated.

Recently, significant attention has been devoted to the utilization of new sensing technologies for pavement maintenance and preservation systems. This study presents a new approach for the continuous health monitoring of asphalt concrete pavements based on piezoelectric self-powered sensing technology. The beauty of this technology is that the signal sensed by the piezoelectric transducers from traffic loading can be used both for empowering the self-powered sensors and damage diagnosis. Numerical and experimental studies were carried out to evaluate the damage detection performance of the proposed self-sustained sensing system. A three-dimensional finite element analysis was performed to obtain the pavement responses under moving tire loading. Damage was introduced as bottom-up fatigue cracks at the bottom of the asphalt layer. Thereafter, features extracted from the dynamic strain data for a number of sensing nodes were used to detect the damage progression. The laboratory tests were carried out on an asphalt concrete specimen in three point bending mode. For the protection of the embedded sensors, a new miniaturized spherical packaging system was designed and tested. Based on the results of the numerical study, the sensing nodes located along the loading path are capable of detecting the damage progression. Besides, the experimental study indicates that the proposed method is efficient in detecting different damage states including crack propagation. Finally, the possibility of localizing the damage and quantifying its severity was investigated and discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Construction and Building Materials - Volume 114, 1 July 2016, Pages 719–736
نویسندگان
, , , ,