کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2588136 1130952 2006 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aqueous extracts of selenium-fertilized broccoli increase selenoprotein activity and inhibit DNA single-strand breaks, but decrease the activity of quinone reductase in Hepa 1c1c7 cells
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش تغذیه
پیش نمایش صفحه اول مقاله
Aqueous extracts of selenium-fertilized broccoli increase selenoprotein activity and inhibit DNA single-strand breaks, but decrease the activity of quinone reductase in Hepa 1c1c7 cells
چکیده انگلیسی

Depending on growth conditions, broccoli may be enriched in the isothiocyanate sulforaphane and/or the mineral selenium (Se); both compounds may play an important role in the reduction of intracellular oxidative stress and chronic disease prevention. Sulforaphane up-regulates transcription of Phase II detoxification proteins (e.g. quinone reductase [QR]), whereas Se is needed for the production of thioredoxin reductase (TR) and glutathione peroxidase-1 (GPx1), both of which exhibit antioxidant activity. The objective of the present study was to determine whether the fertilization of broccoli with Se increases the antioxidant ability of broccoli. Hydrogen peroxide-induced DNA single-strand breaks (measured by single cell electrophoresis, Comet assay) and activity of antioxidant enzymes (GPx, TR and QR) were measured in mouse hepatoma cells (Hepa 1c1c7 cells) treated with purified sulforaphane, sodium selenite or extracts of selenized broccoli. When supplied separately as chemically pure substances, sodium selenite was more effective than sulforaphane for reduction of single-strand breaks. Se-fertilized broccoli extracts were the most effective for reduction of DNA single-strand breaks, and extracts that contained 0.71 μM Se and 0.08 μM sulforaphane inhibited 94% of DNA single-strand breaks. A significant positive association (r = 0.81, p = 0.009) between GPx1 activity and inhibition of DNA single-strand breaks as well as a 24 h lag time between addition of Se, sulforaphane or broccoli extract and inhibition of single-strand breaks suggests that some of the antioxidant protection is mediated through selenoproteins. Conversely, fertilization of broccoli with Se decreased the ability of broccoli extract to induce QR activity. These results demonstrate that Se and sulforaphane, alone or as a component of broccoli, may help decrease oxidative stress. They further suggest that Se is the most important for decreasing oxidative stress, but maximizing the Se content of broccoli also may compromise its ability to induce Phase II detoxification proteins.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Food and Chemical Toxicology - Volume 44, Issue 5, May 2006, Pages 695–703
نویسندگان
, ,