کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2597069 1562402 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The acute lethality of acrylonitrile is not due to brain metabolic arrest
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
پیش نمایش صفحه اول مقاله
The acute lethality of acrylonitrile is not due to brain metabolic arrest
چکیده انگلیسی

Acrylonitrile (AN) is an organic compound produced in large quantities by the chemical industry and is acutely toxic. One mechanism proposed to explain the toxicity of AN is metabolism by P450 into cyanide (CN). Although blood and brain levels of CN in rats following an LD90 dose of AN are consistent with acute toxicity, blocking CN formation with P450 inhibitors does not prevent lethality. Another mechanism implicated in toxicity is covalent binding of AN to cysteine residues in tissue proteins. Previous work in our laboratory has shown that AN can irreversibly inactivate the catalytically active cysteine-149 in glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Inactivation of GAPDH by AN would be expected to impair glycolytic ATP production and, when coupled to the inhibition of mitochondrial ATP synthesis by the AN metabolite CN, would result in metabolic arrest, particularly in brain. In this study we have measured the high energy metabolites phosphocreatine (PCr), ATP, ADP and AMP by HPLC and compared their levels in the brains of rats treated with an LD90 dose of AN, when respiration ceased, vs. controls. Two methods of rapid brain freezing in liquid nitrogen were used: funnel freezing (FF) and head immersion (HI). AN administration resulted in large decreases in PCr of 74% (FF) and 80% (HI) but relatively minor decreases in ATP of 5% (FF) and 21% (HI) and Energy Charge of 6% (FF) and 10% (HI). Thus, although substantial depletion of PCr was observed, possibly due to inhibition of creatine kinase by AN, we found no evidence that brain ATP is depleted when respiration ceases in AN-intoxicated rats.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Toxicology - Volume 253, Issues 1–3, 20 November 2008, Pages 104–109
نویسندگان
, ,