کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
272116 505012 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Thermal–hydraulic and safety analysis for Chinese helium-cooled solid breeder TBM cooling system
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Thermal–hydraulic and safety analysis for Chinese helium-cooled solid breeder TBM cooling system
چکیده انگلیسی

The thermal–hydraulic behavior and safety performance of the Chinese helium-cooled solid breeder (CH HCSB) test blanket module (TBM) with helium cooling system (HCS) has been studied using RELAP5/Mod3.4 code. According to accident analysis specification for TBM, two design basis accidents including loss of off-site power and TBM first wall (FW) ex-vessel coolant pipe break are investigated. The influences of different break locations and plasma termination behaviors are analyzed comprehensively. The results show that natural circulation is established in helium cooling circuit and the TBM can be cooled effectively after loss of off-site power. It is much more critical when the pipe break occurs at the downstream side of the circulator compared with that of upstream side of the circulator. In case of a more serious accident that the ex-vessel break extends to the TBM FW, the results reveal that TBM could be cooled down by natural circulation and radiation. In addition, at the beginning of ex-vessel loss of coolant accident (LOCA), large temperature difference between break and intact TBM FW pipes is found. The accidental results finally show that the integrity of the FW can be guaranteed if the plasma is terminated with a 3 s delay time by fusion power shutdown system (FPSS) in the case of ex-vessel LOCA.


► The CH HCSB TBM cooling system has been investigated using RELAP/Mod3.4.
► Two design basis accidents are investigated.
► The natural circulation heat removal capability is discussed.
► The influence of the break location in the ex-vessel LOCA is studied.
► The TBM is designed with sufficient capability heat removal for the accidents.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fusion Engineering and Design - Volume 88, Issue 1, January 2013, Pages 33–41
نویسندگان
, , , , , , ,