کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2759403 1150154 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Airway Ventilation Pressures During Bronchoscopy, Bronchial Blocker, and Double-Lumen Endotracheal Tube Use: An In Vitro Study
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی بیهوشی و پزشکی درد
پیش نمایش صفحه اول مقاله
Airway Ventilation Pressures During Bronchoscopy, Bronchial Blocker, and Double-Lumen Endotracheal Tube Use: An In Vitro Study
چکیده انگلیسی

ObjectiveTo quantify inspiratory flow resistance of instrumented single-lumen and double-lumen endotracheal tubes.DesignBench-top in vitro experiments.SettingLaboratory of a university hospital.ParticipantsIn vitro lung simulator.InterventionsA lung simulator was ventilated mechanically via several single- and double-lumen endotracheal tubes (ETT) that were instrumented with adult and pediatric bronchoscopes as well as bronchial blockers. While ventilating with a square-flow wave and increasing peak inspiratory flow from 10-100 L/min, the pressures proximal and distal to the instrumented ETT were measured. Flow (Q) and the pressure loss (∆P) were related with regression of the quadratic equation: ∆P = k1Q + k2Q2.Measurements and Main ResultsWith all combinations of single-lumen endotracheal tubes, double-lumen endotracheal tubes, bronchial blockers, and adult and pediatric bronchoscopes, ∆P was accurately related to Q using the quadratic equation with excellent fit, R2>0.99 for all combinations. The regression parameters k1 and k2 were statistically significant for all combinations except k1 with a bronchoscope through 37-Fr double-lumen endotracheal tube. Parameter k2 was dominant at flows above 10 L/min for uninstrumented airways and 20 L/min for instrumented airways. ∆P increased dramatically with flow, and increased with decreasing endotracheal tube size or addition of instrumentation in a quantitatively predictable manner.ConclusionsPressure loss across instrumented endotracheal tubes follows a predictable flow-dependant quadratic pattern. Using the quantitative in vitro results of this study, a clinician can maximize inspiratory ventilation pressures during these situations without delivering excessive airway pressures to the patient.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cardiothoracic and Vascular Anesthesia - Volume 28, Issue 4, August 2014, Pages 873–879
نویسندگان
, , ,