کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
278845 | 1430327 | 2009 | 9 صفحه PDF | دانلود رایگان |

This work aims at developing an efficient method to compute the compliance due to a crack modeled as a flat ellipsoid of any shape in an infinite elastic matrix of arbitrary anisotropy (Eshelby problem) when no closed-form solution seems currently available. Whereas the solution of this problem usually requires the calculation of the so-called fourth-order Hill polarization tensor if the ellipsoid is not singular, it is shown that the crack compliance can be derived from the first-order term in the Taylor expansion of the Hill tensor with respect to the smallest aspect ratio of the ellipsoidal inclusion. For a 3D ellipsoidal crack model, this first-order term is expressed as a simple integral thanks to the Cauchy residue theorem. A similar method allows to express the same term in the case of a cylindrical crack model without any integral. A numerical example is finally treated.
Journal: International Journal of Solids and Structures - Volume 46, Issues 22–23, November 2009, Pages 4064–4072