کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
278948 | 1430314 | 2010 | 8 صفحه PDF | دانلود رایگان |

Polymer-supported metal films as interconnects for flexible, large area electronics may rupture when they are stretched, and the rupture strain is strongly dependent upon the film/substrate interfacial properties. This paper investigates the influence of interfacial properties on the ductility of polymer-supported metal films by modeling the microstructure of the metal film as well as the film/substrate interface using the method of finite elements and the cohesive zone model (CZM). The influence of various system parameters including substrate thickness, Young’s modulus of substrate material, film/substrate interfacial stiffness, strength and interfacial fracture energy on the ductility of polymer-supported metal films is systematically studied. Obtained results demonstrate that the ductility of polymer-supported metal films increases as the interfacial strength increases, but the increasing trend is affected distinctly by the interfacial stiffness.
Journal: International Journal of Solids and Structures - Volume 47, Issues 14–15, July 2010, Pages 1830–1837