کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
279851 | 1430360 | 2008 | 13 صفحه PDF | دانلود رایگان |

Except for particular cases, the classical expressions of the Eshelby or Hill polarization tensors, depend, respectively, on a simple or double integral for a fully anisotropic two-dimensional or three-dimensional elastic body. When the body is two-dimensional, we take advantage of Cauchy’s theory of residues to derive a new explicit expression which depends on the two pairs of complex conjugate roots of a quartic equation. If the body exhibits orthotropic symmetry, these roots are explicitly given as a function of the independent components of the elasticity tensor. Similarly, the double integral is reduced to a simple one when the body is three-dimensional. The corresponding integrand depends on the three pairs of complex conjugate roots of a sextic equation which reduces to a cubic one for orthotropic symmetry. This new expression improves significantly the computation times when the degree of anisotropy is high. For both two and three-dimensional bodies, degenerate cases are also studied to yield valid expressions in any events.
Journal: International Journal of Solids and Structures - Volume 45, Issues 3–4, February 2008, Pages 757–769