کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
280458 | 1430370 | 2007 | 13 صفحه PDF | دانلود رایگان |

A model for the behavior of low-density, open-cell foam under compressive strain is proposed. Using this model, a tractable relationship between the normalized permeability and the applied strain is developed. An experimental study of the effect of strain on the permeability of open-cell polyurethane foams is presented. The experiments are performed using a Newtonian fluid in the fully laminar regime, where viscous forces are assumed to dominate. The model is found to describe the experimental data well and be independent of the foam cell size, the direction of flow with respect to the foam rise direction, and the properties of the saturating fluid. In a companion paper, the model for the permeability of open-cell foam is combined with Darcy’s law to give the contribution of viscous fluid flow to the stress–strain response of a reticulated foam under dynamic loading.
Journal: International Journal of Solids and Structures - Volume 44, Issue 16, 1 August 2007, Pages 5133–5145