کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
280585 1430402 2005 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The helicoidal modeling in computational finite elasticity. Part III: Finite element approximation for non-polar media
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
The helicoidal modeling in computational finite elasticity. Part III: Finite element approximation for non-polar media
چکیده انگلیسی

The helicoidal modeling of the continuum, as proposed in Part I, is applied to finite elasticity analyses of simple materials unable of couple-stressing. First, the non-polar medium is introduced via a constitutive postulate and results in a sort of constrained medium, having the axial vector of the Biot stress tensor as a primary unknown field and the statement of polar decomposition of the deformation gradient as a governing equation. Next, the variational formulation is accommodated to the non-polar case, and the ensuing principle is approximated by the finite element method. The nonlinear finite elements have the nodal oriento-positions as degrees-of-freedom and are based on the multiplicative interpolation developed in Part II. The interpolation and an analysis methodology based on the multiplicative updating of the kinematical unknowns, ensure frame-invariant and path-independent solutions. Several examples, with either linear or nearly incompressible Neo-Hookean elastic materials, attest the performance of the proposed modeling in high deformation problems with large three-dimensional rototranslations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Solids and Structures - Volume 42, Issues 24–25, December 2005, Pages 6475–6513
نویسندگان
, ,