کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2815500 1159873 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی ژنتیک
پیش نمایش صفحه اول مقاله
Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach
چکیده انگلیسی


• A total of 16 potential miRNA families were predicted in ginger and first time reported.
• Thirteen miRNA families were found to regulate 300 targets which play important role in growth and development.
• miRNA family miR5015 was observed to be regulating the biosynthesis of gingerol.
• Three miRNAs were involved in rhizome development and essential oil biosynthesis.

MicroRNAs (miRNAs) are a large family of endogenous small RNAs derived from the non-protein coding genes. miRNA regulates the gene expression at the post-transcriptional level and plays an important role in plant development. Zingiber officinale is an important medicinal plant having numerous therapeutic properties. Its bioactive compound gingerol and essential oil posses important pharmacological and physiological activities. In this study, we used a homology search based computational approach for identifying miRNAs in Z. officinale. A total of 16 potential miRNA families (miR167, miR407, miR414, miR5015, miR5021, miR5644, miR5645, miR5656, miR5658, miR5664, miR827, miR838, miR847, miR854, miR862 and miR864) were predicted in ginger. Phylogenetic and conserved analyses were performed for predicted miRNAs. Thirteen miRNA families were found to regulate 300 target transcripts and play an important role in cell signaling, reproduction, metabolic process and stress. To understand the miRNA mediated gene regulatory control and to validate miRNA target predictions, a biological network was also constructed. Gene ontology and pathway analyses were also done. miR5015 was observed to regulate the biosynthesis of gingerol by inhibiting phenyl ammonia lyase (PAL), a precursor enzyme in the biosynthesis of gingerol. Our results revealed that most of the predicted miRNAs were involved in the regulation of rhizome development. miR5021, miR854 and miR838 were identified to regulate the rhizome development and the essential oil biosynthesis in ginger.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Gene - Volume 575, Issue 2, Part 2, 10 January 2016, Pages 570–576
نویسندگان
, , ,