کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2840443 | 1571007 | 2014 | 6 صفحه PDF | دانلود رایگان |

• RNAi was developed in an endoparasitoid wasp species, parasitoid of Drosophila.
• The expression of a major venom protein was strongly and specifically silenced.
• The silencing of the venom protein lasted the entire parasitoid lifetime.
Endoparasitoid wasps are essential regulators of insect pests in ecosystems as well as important biological control auxiliaries. Traits important for parasitism success, such as the injection of venom proteins at oviposition, have thus been mainly studied. However, identification of the key genes involved among the large number of genes identified was still prevented by the lack of functional approaches. Here, we report the development of RNA interference (RNAi) in Leptopilina boulardi, a figitid endoparasitoid that performs its entire development inside the Drosophila host. Having set up conditions for in vitro development of parasitoid late larval stages or pupae, we first targeted the cinnabar gene by microinjecting double-stranded RNA (dsRNA), leading to its silencing and production of red-eyed individuals. We then demonstrated that expression of the gene encoding LbGAP, a virulence factor found in a high amount in L. boulardi venom, could be specifically and almost completely silenced. Finally, a time-course analysis revealed that LbGAP silencing lasted during the entire lifetime of L. boulardi. This is the first report of the efficient silencing of venom protein-encoding genes in parasitoid wasps. Overall, RNAi opens the way for a large-scale functional analysis of parasitoid venom factors as well as other traits involved in parasitism success and more largely in the biology of these ecologically important organisms.
Figure optionsDownload as PowerPoint slide
Journal: Journal of Insect Physiology - Volume 63, April 2014, Pages 56–61