کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2840558 1165331 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An amoeba phagocytosis model reveals a novel developmental switch in the insect pathogen Bacillus thuringiensis
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش حشره شناسی
پیش نمایش صفحه اول مقاله
An amoeba phagocytosis model reveals a novel developmental switch in the insect pathogen Bacillus thuringiensis
چکیده انگلیسی

The Bacillus cereus group bacteria contain pathogens of economic and medical importance. From security and health perspectives, the lethal mammalian pathogen Bacillus anthracis remains a serious threat. In addition the potent insect pathogen Bacillus thuringiensis is extensively used as a biological control agent for insect pests. This relies upon the industrial scale induction of bacterial spore formation with the associated production of orally toxic Cry-toxins. Understanding the ecology and potential alternative developmental fates of these bacteria is therefore important. Here we describe the use of an amoeba host model to investigate the influence of environmental bactivorous protists on both spores and vegetative cells of these pathogens. We demonstrate that the bacteria can respond to different densities of amoeba by adopting different behaviours and developmental fates. We show that spores will germinate in response to factors excreted by the amoeba, and that the bacteria can grow and reproduce on these factors. We show that in low densities of amoeba, that the bacteria will seek to colonise the surface of the amoeba as micro-colonies, resisting phagocytosis. At high amoeba densities, the bacteria change morphology into long filaments and macroscopic rope-like structures which cannot be ingested due to size exclusion. We suggest these developmental fates are likely to be important both in the ecology of these bacteria and also during animal host colonisation and immune evasion.

Figure optionsDownload as PowerPoint slideHighlights
► Bacillus cereus group spores germinate and grow in response to amoeba excretions.
► Vegetative cells actively colonise the amoeba surface to resist phagocytosis.
► A filamentous morphology switch prevents phagocytosis by the amoeba.
► Filaments can expand to form macroscopic “rope-like” structures visible by eye.
► This applies to B. cereus, B. thuringiensis and B. anthracis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Insect Physiology - Volume 59, Issue 2, February 2013, Pages 223–231
نویسندگان
, , ,