کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2842934 | 1571098 | 2015 | 8 صفحه PDF | دانلود رایگان |
• Exercise in hot environment induces higher hyperglycemia and lactatecidemia than in temperate environment.
• Exercise in hot environment increases more core temperature, plasma and urine concentrations of damage markers than in temperate environment.
• Exercise in hot environment results in a more pronounced plasma antioxidant and anti-inflammatory response.
• Environmental temperature plays a significant role in exercise-derived oxidative stress.
Exercise in thermally stressful environmental conditions can enhance oxidative stress. We sought to measure the plasma antioxidant defenses and cytokine response together with oxidative damage post-exercise in a temperate versus a hot environment. The plasma concentrations of vasoactive endothelin-1 and vascular angiogenic growth factor were also evaluated. Male athletes (n=9) volunteered to participate. The athletes randomly performed two bouts of treadmill exercise of 45 min at 75–80% of maximal oxygen uptake in a climatic-controlled chamber under two different conditions: temperate environment (10–12 °C, 40–55% humidity) and hot, humid environment (30–32 °C, 75–78% humidity). Venous blood samples were obtained immediately pre- and post-bout and on recovery after 2 h. Serum glucose, malondialdehyde and lactate concentrations were significantly increased post-exercise in hot but maintained in the temperate environment; these post-exercise values were significantly higher after exercise in hot than in temperate. Urinary 8-hydroxy-2′-deoxyguanosine concentration, plasma phosphocreatine kinase and catalase activities, creatinine and monocyte chemoattractant protein-1, and interleukin-6 significantly increased post-exercise in hot but maintained in temperate environment. The post-exercise circulating values of antioxidant enzyme paraoxonase-1 and endothelin were significantly higher in the hot than in temperate environment. Exercise in a hot and humid environment resulted in mild hyperthermia with elevated perceived exertion and thermal stress. Hyperthermic environment induced hyperglycemia, lactatecidemia and more cellular and oxidative damage than exercise in a temperate environment but also induced a post-exercise antioxidant and anti-inflammatory response in plasma. These results suggest that environmental temperature needs to be taken into account when evaluating exercise-related oxidative stress and inflammation.
Journal: Journal of Thermal Biology - Volume 47, January 2015, Pages 91–98