کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
296565 511729 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimental and numerical study of stratification and solidification/melting behaviors
ترجمه فارسی عنوان
مطالعه تجربی و عددی رفتارهای طبقه بندی و خرد شدن / ذوب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی


• Numerical analysis of stratification and solidification/melting behaviors.
• Validation experiment performed with low-melting-point materials.
• Investigation of layer configurations and heat transfer characteristics.
• Good agreement between the calculation and experimental results.

Given the severe accident of a light water reactor (LWR), stratification and solidification/melting are important phenomena in melt corium behavior within the reactor lower head, influencing the decay heat distribution and ablation of penetration tube and vessel wall. Numerical calculation is a necessary and effective approach for mechanistic study of local melt corium behavior. In this study, the improved moving particle semi-implicit (MPS) method was applied for investigating the stratification and solidification/melting phenomena. The implicit viscous term calculation technique and stability improvement technique were adopted to enable MPS to simulate the stratification process of materials with high viscosity in phase transition stage. The solid–liquid phase transition model was also coupled with MPS method. The validation experiment was carried out with low-melting-point metal tin and NeoSK-SALT. The layer configurations and temperature profiles obtained from MPS calculation showed good agreement with the experimental results. Meanwhile, the calculation results indicated that the material freezing behavior could affect the layer formation, and the layer configurations also significantly influenced the temperature profiles and heat flux distributions. The present results demonstrated that MPS method has the capacity to understand the local melt behavior in detail that is relevant to stratification and phase transition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 272, June 2014, Pages 109–117
نویسندگان
, , ,